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Summary 

The conformational behaviour of a macromolecule is described by a random walk of 
fixed contour length which consists of n straight segments, where n=l,2 ..... Two cases 
are discussed: (i) the segments are of equal length; (ii) the points where the random 
walk changes its direction are randomly distributed along the contour. Analytical 
expressions for the mean squared end-to-end distance R and for the radius of gyration 
Rg are presented. When deriving Rg it is assumed that the mass of the chain is 
distributed uniformly along the contour. 

Introduction 

A vast literature exists on the theory of random walks and its application to the 
conformational statistics of macromolecules, see, e.g., references 1 - 5. In this Note 
two basic types of random walks are discussed. Analytical expressions for the root 
mean squared end-to-end distance R and the radius of gyration Rg are derived. The 
following approach for the discussion of the conformational behaviour of a 
(semiflexible) macromolecule is used: a random walk of contour length L changes its 
direction k times (k=O, 1,2,...). The k=O case represents the rigid rod, whereas the case 
k>>l coincides with the classical random walk. Two different models are treated: 
Model I. The k points where the random walk changes its direction are distributed 
equidistantly along the contour. 
Model II. These k points are distributed randomly along the contour. 
Expressions for R and Rg will be given for both cases. When deriving Rg it is assumed 
that the (scattering) mass of the polymer is smeared along its contour length. This 
approach must be contrasted with the assumption that the mass of the 
macromolecule is concentrated in beads and is justified when the chain is considered 
on a length scale which is much larger than the dimension of the monomeric units. In 
principle, the derivation of R and Rg is straightforward. But, since the calculations are 
somewhat tedious and since explicit expressions are given describing the crossover 
from rigid rod to random walk behaviour the results are presented here. 
Models which are related to Model I and II, respectively, have been discussed in the 
Literature: the broken wormlike chain model of semiflexible polymers (6), rods joined 
by flexible coils (7,8), and the randomly broken chain (9). From the experimentalist's 
point of view such models are relevant when discussing the conformational (and thus 
scattering) behaviour of (i) stiff molecules with flexible links being built in (10,11) and 
of (ii) biomolecules undergoing a rod-to-coil transition (12,13). 

*Herin Professor H. Ruppersberg herzlichst zum 60. Geburtstag gewidmet 
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Resul t s  

Model  I. The random walk consists of n=k+l straight segments of length b=L/n. It  is 
assumed that  there is no directional correlation between the segments, i.e. excluded 
volume effects are neglected. The mean squared distance is then given by: 

R2(n) = L 2 /n  -~ nb 2 (1) 

The squared radius of gyration for a continuous distribution of mass along the contour 
is defined in the present case as follows: 

LL 
~2(n ) : (2L 2) l f f ( r2 ( s i , s2 ) )dS ldS  2 

oo 
(2) 

s i 0=1,2) is the curvilinear distance measured along the chain and F(s~,s2) is the 
vector between the points of the chain at s 1 and s 2. The averaging is performed with 
respect to all configurations. After some algebra one finds: 

= ' ( 2 . 2 ; ' ] +  
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(3) 

For n=l, i.e. the rigid rod, Eq. (3) yields R~=L/12. For n>>l  one obtains 

R~ =nb z / 6 ~- R 2 / 6. These results for the limiting cases are well known. It is 

interesting to compare Eq. (3) with the appropriate expression for a random walk 
with n steps of length b where the mass of the chain is located at the junction of two 
segments and at the end points. In this case the following relation is obtained: 

6 1+ 1/n 
(4) 

Model  II. The k points (P) where the random walk changes its direction are 
distributed randomly along the contour. The probability of finding such a point in a 
given interval along the contour is proportional to the length of this interval and 
independent of the positions of the rest of these points. R2(n) is given by 

(5) 

r i is the length of the i-th segment. The averaging is performed with respect to all 
distributions of the points P. Respecting that  these points are indistinguishable and 
performing the respective n-fold integral one obtains: 

R:(n) = 2LZ(n+ 1)-' - = 2ni l ( l+  n - ' ) - '  (6) 

where l=L/n is the average length of a segment. 
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For the derivation of Rg(n) we use again the definition (2). When computing 
@2(sl,Sa) } the average has to be taken with respect to all possible angles between the 

segments, as before, and with respect to all possible positions of the points P. First the 
latter averaging is considered. An expression for the probability of finding k 1 of k 
points P in a given interval of length Is 2 - s 1 I, where s I ,s 2 e[0,L] is found by noting 
that  the described situation is a realization of the Bernoulli process (14). In the 
present case the respective probability density function reads 

Pk,(s,,s2) = (kk )Ek(Is2- s~l)k'(L- [s2- s~]) ~-k' (7) 

(y2(s~,s2)) is obtained by performing the weighted sum using the weights given by 

Eq. (7) with respect to the mean squared end-to-end distances of the random walks 
with contour length ] s 2 - s 1 ] with k 1 points P, where k 1 =0,1,...,k. These quantities 
are known from Eq. (6) when replacing L b y  Is 2 - s 1 ] and k=-n-1 by k 1. When using 
(6), the averaging with respect to all possible orientations of the segments has 
implicitly been performed. The squared radius of gyration is then given by: 

LLF k ] 
(8) 

Interchanging summation and integration and rearranging the occuring sums one 
finally obtains: 

L 2 R2(.)  l + .  
R~(n)- 3(n+ 3) - 6 I+ 3n -~ (9) 

For n=l  and for n>>l the limiting cases discussed above are recovered. 
Modell lI is related to the randomly broken chain discussed in Ref. (9). There the 
points P occur with a certain probability along the chain whereas our Model IX the 
number of points P is fixed. 
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